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Abstract
We have developed a realistic model for silica aerogels based on a diffusion-
limited cluster–cluster aggregation model in three dimensions with a primary
particle represented by a sample of vitreous silica given by molecular
dynamics simulations. Using the spectral moments method, with more than
30 000 computed moments, we calculated the densities of states and the
dynamic structure factors of a simulated sample of silica aerogels of different
macroscopic densities. We reproduce the vibration spectra experimentally
obtained on basic silica, with a fracton region composed of two contributions
associated with stretching and bond-bending modes respectively. The spectral
dimensions describing these contributions are close to the measured values.
The analysis of our numerical results in the light of the scaling argument is
reported.

1. Introduction

Silica aerogels are quite appreciated in a number of high technology areas. The need to obtain
a better understanding of these systems has led to several experimental (Courtens et al 1987,
1988, Reichenauer et al 1989, Vacher et al 1990, Anglaret et al 1994, Courtens and Vacher
1997), theoretical (Alexander and Orbach 1982, Alexander 1989 and Alexander et al 1993)
and numerical (Hasmy et al 1993, 1994, Nakayama et al 1994, Rahmani et al 1994, 1995,
1996, 1998, Stoll et al 1992, Viliani et al 1995) studies. These studies have revealed the
structural and dynamic properties of these systems.

In the last decade, fractals have attracted considerable interest because of their potential
for describing a wide range of non-regular structures. Dynamic scaling has been applied to
the dynamics of fractal structures. To describe the vibrational density of states (DOS) g(ω) of
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these systems, Alexander and Orbach (1982) introduced the spectral dimension d for fracton
modes:

g(ω) ∝ ωd̃−1. (1)

To obtain further information on the dynamics of fractal structures, Alexander et al (1993)
studied the dynamic structure factor S(q, ω) of these systems without any specific structure
model in the case of scalar elasticity. Based on the single length scale postulate (SLSP), they
showed that S(q, ω) should have the following scaling form:

S(q, ω) = qyH(qλ(ω)) (2)

where the single length λ(ω) scale follows the dispersion relation

λ(ω) ∝ ω−d̃/D. (3)

H is a scaling function andD is the fractal dimension of the system. In homogeneous systems,
d̃ and D correspond to the Euclidean dimension d.

In order to test the validity of these dynamic scaling arguments, we have previously
published results concerning different simulated structures (Rahmani et al 1995, 1996; see
also Stoll et al 1992). There was excellent agreement with theory.

Different experimental studies suggested that silica aerogels are excellent systems for
investigating fractal vibrations. Combining neutron, Raman and Brillouin spectroscopies,
Vacher et al (1990) identified a succession of regimes in the vibrational spectra of silica
aerogels. Besides the phonon–fracton (ωc/2π ≈ 1 GHz) and fracton–particle (ωc/2π ≈ 250–
600 GHz) mode crossovers, they find an additional crossover (ωc/2π ≈ 10 GHz) that suggests
two distinct elastic regimes in the fracton range. Based on the work of Feng (1985), the authors
supposed that when ωe < ω < ωa , the fracton properties of the system are governed by bond-
stretching motion, which scales the same way as the scalar model with d̃s = 1.9–2.2, whereas,
when ωc < ω < ωe, bond-bending motions are dominant with an effective spectral dimension
d̃b = 0.9–1.3. Phonons and particle modes are given for ω < ωc and ω > ωa respectively.

Using small-angle neutron scattering (SANS), Vacher et al (1990) showed that porous
silica aerogels are made up of a disordered array of connected fractal clusters resulting from
primary-particle aggregation. These systems reveal a fractal structure for a wide range of
densities with fractal dimension D = 1.8–2.4. The primary-particle structure is similar to
vitreous silica (v-SiO2). Basic and neutral aerogels can be distinguished according to the
pH of the aqueous hydrolysis solution. Basic aerogels are made of larger-sized (≈20 Å),
but strongly polydispersed, primary particles. SANS and simulations (Anglaret et al 1994,
Hasmy et al 1994, Rahmani et al 1996) of base-catalysed aerogels show that excellent fits
of the scattering intensity are obtained with the diffusion-limited cluster–cluster aggregation
(DLCA) structure fractal model (Botet et al 1983, Jullien and Botet 1987, Hasmy et al 1993,
1994). The fractal dimension of the DLCA built in three dimensions is D = 1.8.

In a previous work (Rahmani et al 1994), we developed a model for silica aerogels based
on infinite percolating clusters, with a homogeneous particle represented by a small sample
of v-SiO2 given by molecular dynamics simulation (MD). Based on the Born–Mayer–Higgins
potential (Garofalini 1982, Feuston and Garofalini 1988), our models, where we supposed that
each site of the percolating cluster was occupied by a sample of v-SiO2, showed that it is difficult
to clearly reproduce contributions of the DOS of silica aerogels. The use of the percolation
structure model is inadequate for silica aerogel structure. The analysis of vibrational spectra
in terms of spectral dimensions involves building a model based on another structure such as
DCLA for basic aerogels.

A primary goal of this work was to reproduce the measured DOS and inelastic scattering
intensity obtained in small-angle neutron scattering (SANS), from a realistic fractal model for
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silica aerogels. To do this, it is not only necessary to work on a very large system able to
generate fractons of up to 1 GHz, but we must also have an efficiency computational code to
treat these systems. Note that this explored frequency region (≈1 GHz) corresponds to 3/105

of the maximal frequency ωmax ≈ 35 000 GHz of the spectrum.
To calculate the total DOS and dynamic structure factor, we used the spectral moments

method (Benoit et al 1992), which is a powerful tool for determining the linear response
(infrared, Raman and inelastic neutron scattering) of harmonic systems. When applied to the
calculation of total DOS for very large systems, the method presents some difficulties at very
low frequencies. Indeed, as shown in Benoit et al (1992), a sharp truncation of the fraction
(200 moments) causes the appearance of sharp lines in the calculated spectrum. However, the
calculations show that a greater number of moments are required to obtain the best results.
Thanks to the hierarchical parallel computation technique and the size of supercomputers,
we can actually calculate more than 30 000 moments for very large systems (more than 106

degrees of freedom) during a real time of less than 24 h on an IBM SP2 computer.
In this paper, we present a model of silica aerogels based on a DLCA structure model in

three dimensions with a primary particle represented by a sample of v-SiO2 given by molecular
dynamics simulations (Jund and Jullien 1999, Jund et al 2000). We report results of the densities
of states and dynamic structure factors performed for samples of different macroscopic density.
In the light of the scaling argument, we deduced values for the required scaling exponents.
Comparisons with results obtained for silica aerogels are reported.

In section 2, we describe our physical model for silica aerogels. The used structure and
interaction potential are presented. In section 3, we present the results of our calculations
of DOS and the inelastic neutron scattering intensity of our systems. We also briefly review
scaling arguments concerning the dynamic structure factor. Finally, in section 4, we discuss
our numerical results in the light of scaling arguments and experimental results obtained for
silica aerogels.

2. Physical model

2.1. Structure

In order to take into account the fractal nature of the structure of silica aerogels, we suppose in
our model that the networks of our systems are represented by a three-dimensional (3D) DLCA
lattice model. As showed by simulation (Hasmy et al 1994, Rahmani et al 1996), this model is
adequate to reproduce properties of basic silica aerogels. To generate a 3D DLCA aggregate,
initially, we randomly dispose n identical primary particles on sites of a cubic lattice, within a
cubic box of edge length l. For a sufficiently high particle concentration (c = n/l3), one can
obtain a gelling network at the end of the aggregation process. The final configuration consists
of a disordered array of interconnected fractal aggregates. It has been shown (Hasmy et al
1994) that the mean size ξ of aggregates decreases as the concentration c increases according
to

ξ ∝ c−1/(3−D) (4)

where the fractal dimension D of 3D DLCA is close to 1.8.
To complete our structural model and according to silica aerogel experiments, we

considered that the primary particle of the 3D DLCA aggregate is represented by a sample
of v-SiO2 obtained by MD simulation at 300 K (Jund and Jullien 1999). In this work, our
primary particle is a 648-atom (216 silicons and 432 oxygens) system with a box length of
20.5 Å. Using MD simulation with a pair potential given by equation (5), one can reproduce a
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similar structure to that determined from x-ray diffraction and neutron scattering experiments
for v-SiO2. The O–Si–O angle distribution is found to peak sharply around the tetrahedral
angle, while the Si–O–Si angles are broadly distributed between 115◦ and 180◦, with a mean
of 150◦ in agreement with the experimental predictions. The radial distribution function and
structure factor S(q) were also found to be in accord with the diffraction and scattering results
(Jund et al 2000).

2.2. Potential

The potential used in this study is given by the Beest–Kramer–Santen (BKS) equation
(Van Beest et al 1990), which was used in the MD simulation to understand the microscopic
structure and dynamics of v-SiO2. One of the advantages of the BKS pair potential is that it is
easy to implement in simulations due to its simple analytical form. The interaction between
atoms i and j is given by

Vij (rij ) = qiqj /rij + Aij exp(−Bij rij )− Cij/r
6
ij (5)

with rij representing the distance between atoms i and j , qi the electronic charge of atom i and
Aij , Bij and Cij fixed as follows: ASiO = 18 003.7572 eV and AOO = 1388.773 eV; BSiO =
4.873 18 Å−1 and BOO = 2.76 Å−1; CSiO = 133.5381 eV Å6 and COO = 175.0 eV Å6. This
potential consists of a Coulomb term and a covalent (short-range) contribution. The condition
of charge neutrality fixes qSi (qSi = +2.4e) and qO (qO = −1.2e). Only two different short-
range interactions are allowed: Si–O to describe the silica bond and the O–O non-bonded
interaction, which modifies the Coulomb repulsion and ensures the tetrahedral arrangement
of oxygen atoms around the silicon atom. The nearest-neighbour cut-off for all interactions is
equal to 7 Å.

So, if uα(l, i) denotes the displacement of atom i of particle l in the α direction, the set
of equations of motion for atom i is given by

miüα(l, i) = −
∑
m,β,j

'αβ(l,m, i, j)uβ(m, j) (α = 1, 2 and 3) (6)

with

'αβ(l, l, i, i) = −
′∑
m,j

'αβ(l,m, i, j)

where 'αβ(l,m, i, j) are the force constants between atoms i (particle l) and j (particle m)
given by

'αβ(l,m, i, j) =
[
rαrβ

r2

(
1

r

∂Vil,jm

∂r
− ∂2Vil,jm

∂r2

)
− δαβ

1

r

∂Vil,jm

∂r

]
r=|ri (l)−rj (m)|

. (7)

mi and ri(l) are respectively the mass and the equilibrium position of the ith atom in the lth
particle.

In this work, we present results obtained for three samples of different concentrations
c = 0.04, 0.06 and 0.08 constructed via the 3D DLCA model on cubic lattice of edge size
l = 30. These concentrations correspond to the aerogel density according to the formula

ρ = cρ0 (8)

where ρ0 = 2.2 g cm−3 is the density of vitreous silica. Hence, our three simulating
samples, denoted A , B and C, have densities ρ = 0.088 g cm−3, ρ = 0.132 g cm−3 and
ρ = 0.176 g cm−3 respectively. The box edge size of these systems is L = 615 Å. We also
performed calculations on a cubic lattice, with periodic conditions, of side l = 5 (L = 102.5 Å)
for concentration c = 1 (ρ0 = 2.2 g cm−3), denoted D.
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3. Numerical results

Using the spectral moments method, we developed calculations of DOS g(ω) and the dynamic
structure factor S(q, ω) for the three samples A, B and C of our model for silica aerogels. The
computed DOS of the system D is reported.

In table 1, we present the dimensions X, Y and Z, the macroscopic densities ρ and the
order N (degrees of freedom) of the dynamic matrix D of our aggregates. We have also given
the memory occupation and the real CPU time necessary to compute one coefficient set (an, bn)
of the continued fraction for each system. Our parallel codes run on nine nodes of 256 Mb
each. We note very good stability in calculation of the coefficients (an, bn).

Table 1. Characteristics of simulated samples: X, Y andZ designate dimensions of the aggregates,
ρ is the macroscopic density,N is the size of D for the four samples A, B, C and D; CPU is the real
time necessary to compute one moment; memory is the memory storage required for each system
using the spectral moments method by node.

Memory
Sample l X (Å) Y (Å) Z (Å) CPU (s) (Mb/node) N ρ (g cm−3)

A 14 70 2.0995 × 106 0.088
B 30 615 615 615 21 110 3.1473 × 106 0.132
C 28 150 4.1990 × 106 0.176
D 5 102.5 102.5 102.5 9 10 0.2430 × 106 2.200

In the following, we only present our numerical results for DOS and the dynamic structure
factor of our systems. The discussion and comparisons of these results with other works will
is presented in the next section.

3.1. Density of states

In figure 1, we have plotted the results of the calculated density of states g(ω) versus the
frequency ω/2π for the isolated homogeneous particle (648 atoms) considering the cases in
which we exclude or not the periodic conditions (P.C.) in the dynamic matrix calculations.
As shown, the spectrum of DOS without P.C. presents (qualitatively) the same behaviours
as the spectrum obtained with P.C., which is in agreement with other simulation results and
experimental data of vitreous silica (Guillot and Guissani 1997, Jund and Jullien 1999). It
is clearly not possible to impose periodic boundary conditions on each particle in a fractal
lattice and atoms at the surface are certainly not all in stable position. However, computations
with an isolated particle highlighted very few imaginary frequencies (one or two out of about
2000). Furthermore, in fractal lattices, every particle is in contact with one to six other
surrounding particles and thus surface atoms are often in stable positions. Note especially that
we specifically study very large extended modes.

In figure 2, we have plotted DOS g(ω) against ω/2π , on a decimal log–log scale, for
the four systems A, B, C and D defined in table 1. We have also reported (from Vacher
et al 1990) the DOS of a neutral aerogel (N) with density ρ = 0.210 g cm−3 in the inset.
The same behaviour is noted between the computed DOS and measured vibrational spectra
of silica aerogels. Thus, we observe that in the high frequency region ω > ωa , the four
computed curves show a common region which clearly represents the particle modes. This
value for ωa/2π ≈ 400 Ghz is in agreement with experimental results concerning silica
aerogels with mean particle radius R ≈ 10 Å. For ω < ωa , the D system (vitreous silica)
spectrum presents a Debye law according to properties of homogeneous systems, whereas in
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Figure 1. DOS g(ω) versusω/2π for the 648-atom isolated homogeneous particle: —◦—, with P.C.;
—�—, without P.C.

Figure 2. DOS g(ω) versus ω/2π , on a log–log scale for the three samples denoted A, B, C and D,
of densities ρ = 0.088, 0.132, 0.176 and 2.2 g cm−3. Inset: vibrational spectrum for a neutral (N)
silica aerogel (ρ = 0.21 g cm−3) as described in Vacher et al (1990). —•—, A; ——, B; —�—, C;
—�—, D.

the intermediate frequency region two contributions are observed with a supplement crossover
frequency ωe/2π ≈ 15 GHz. For ω > ωe, our systems A, B and C present an effective linear
regime, which can be described by the power law g(ω) ∝ ω1.04±0.03. For ωc < ω < ωe, the
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Figure 3. The crossover frequency ωc versus the macroscopic density ρ on a log–log scale.

spectra present an effective linear regime following the scale form g(ω) ∝ ω0.06±0.03. As the
macroscopic density ρ increases, we observe an increase in the crossover frequency ωc. A
Debye law in the very low frequency region ω < ωc can be expected. We note that for the
weakly dense system (ρ = 0.088 g cm−3), the crossover frequency ωc is in the 1 GHz range,
as in experimental conditions.

In figure 3, we have represented the function log(ωc) versus log(ρ). One can deduce that
the frequency crossover ωc follows the power law

ωc ≈ ρ1.66±0.03. (9)

ωc are given by the intersection of straight lines of the bending regime and the expected Debye
law.

As argued in Feng (1985), DOS g(ω) is Debye-like for ω < ωc and complies with the
power law

g(ω) = [Cs]
−3ω2 (10)

where Cs is the Debye averaged sound velocity.
In figure 4, we have represented the function log(Cs) versus log(ρ) . This result reproduces

the experimental data concerning the increase in sound velocity with increasing ρ. Supposing
that the sound velocity is Cs ≈ 4000 m s−1 in vitreous silica then for the weakly dense system
Cs ≈ 255 m s−1. We observe the following power law:

Cs ≈ ρ0.86±0.03. (11)

Qualitatively, this behaviour is consistent with results obtained for basic silica aerogels
(Anglaret et al 1995).
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Figure 4. The sound velocity Cs versus the macroscopic density ρ on a log–log scale.

3.2. Dynamic structure factor

3.2.1. Scaling arguments. The inelastic cross-section is directly related to the displacement–
displacement correlation function I (q, ω), given by

I (�q, ω) = (n(ω) + 1)
∑
j

|aj (�q)|2 (δ(ω − ωj)− δ(ω + ωj))

2ωj

≈ kT

ω2

∑
j

|aj (�q)|2δ(ω − ωj) (12)

for ω > 0, with (n(ω) + 1) ≈ kT /ω and

aj (�q) =
∑
nα

bn√
mn
qα〈αn | j〉 exp(i�q�rn) (13)

where �rn,mn and bn are, respectively, the equilibrium position, the mass and scattering length
(bO = 5.8 and bSi = 4.14) of the nth atom, ωj and 〈αn | j〉 are the frequency and the (αn)
components of the eigenvector |j〉 of the j th mode, α = x, y, z are the Cartesian indices, kT
is the thermal energy and qα is the component α of �q.

The dynamic structure factor S(q, ω) is defined by

S(q, ω) =
∑
j

|aj (�q)|2δ(ω − ωj). (14)

As proposed by Alexander et al (1993), assuming that the SLSP is valid, in the case of scalar
elasticity, the dynamic structure factor S(q, ω) has the universal scaling form (2) and complies
with the asymptotic behaviour in the qλ � 1 limit,

S(q, ω) ∝ qγω−α (15)

where γ = 4 and α = 1 − (2σ − 4)d̃/D, σ being a scaling index describing modulation of
the density in the embedding space by the vibration. In the qλ � 1 limit, S(q, ω) involves
two contributions:

S(q, ω) = S1(q, ω) + S2(q, ω) (16)
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Figure 5. The scattering intensity I (q, ω) versus the frequency ω/2π on a log–log scale for
four values of the wave-vector q (Å−1) for the A sample: —◦— 1 = 0.1168, —�— q = 0.4672,
—•— q = 0.584, —— q = 1.1168. Inset: inelastic neutron scattering spectra for two (T = 160 K
and T = 300 K) basic (B) silica aerogels (ρ = 0.095 g cm−3) as described in Vacher et al (1990).

where the functions S1(q, ω) and S2(q, ω) obey the power laws

S1(q, ω) ∝ qδ1ωβ1 with β1 = d̃ − 1 and δ1 = 2σ −D (17a)

and

S2(q, ω) ∝ qδ2ωβ2 with β2 = 2σ d̃/D + d̃ − 1 and δ2 = −D. (17b)

3.2.2. Results. In figure 5, we report, on a log–log scale, the frequency dependence of
intensity I (q, ω) for our sample A of density ρ = 0.088 g cm−3 for four typical curves
corresponding to values of the wave-vector modulus q: q = 0.1168, 0.4672, 0.584 and
1.1168 Å−1. The abscissa indicates the frequency ω/2π . In order to compare the calculated
and experimental data, we present in the inset (from Vacher et al 1990) the inelastic neutron
scattering measured data for basic silica aerogel (B) density ρ = 0.095 g cm−3 at two values
of q (1.53 Å−1, 4.82 Å−1) and two temperatures (T = 160 K and T = 300 K).

In figure 6, we have plotted, for several q-values (q = 0.0097, 0.0292, 0.1168, 0.292,
1.168 and 2.92 Å−1), the reduced dynamic structure factor S̄(q, ω) = S(q, ω)/q2 versus
frequency, on log–log scale, for sample A. In the low frequency region (ω/2π < 50 GHz), for
each q-value, all curves exhibit the same form, similar to DOS behaviour. In the intermediate
frequency region (ωe < ω < ωa), we observe that as soon as q increases, a regime with a
positive slope appears in the low-frequency region to the detriment of the decreasing high-
frequency regime. Two regions can thus be distinguished in stretching regime fracton modes.
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Figure 6. The reduced dynamic structure factor S̄(q, ω) = S(q, ω)/q2 versus ω/2π , on a log–
log scale, for sample A of density ρ = 0.088 g cm−3 for six values of the wave-vector modulus
q (Å−1): —◦—, 0.0097; —�—, 0.0292; —♦—, 0.1168; —�—, 0.2920; —•—, 1.1168; ——, 2.920.

If ω0 denotes the frequency at which S(q, ω) has a maximum value for each fixed wave-vector
q, as qλ(ω0) = 1, the case where ω � ω0 (ω � ω0) corresponds to the qλ � 1 (qλ � 1)
limit. In this region, we note that at low q-values, the dynamic structure factor is mostly
dominated by a decreasing linear regime (ω � ω0), whereas at larger q, the linear increasing
regime is dominant (ω � ω0). The frequency dependence of the global dynamic structure
factor S̄(ω) = ∑

q S̄(q, ω) given by averaging several q-values, can be expressed as

S̄(ω) ∝ ω−2.05±0.05 for qλ � 1 (18a)

and

S̄(ω) ∝ ω0.97±0.05 for qλ � 1. (18b)

Let us consider the wave-vector dependence of S(q, ω). In order to compare our numerical
results to the experimental dynamic structure factor for silica aerogels, we have reported in
figure 7 the variation inS(q, ω) versus q for the A sample for five fixed frequenciesω/2π : 12.7,
20.8, 34.0, 55.5 and 90.7 GHz. In the inset, we have reported (from Reichenauer et al 1989),
the experimental and theoretical (full line) dynamic structure factors for different frequencies
for a basic aerogel of density ρ = 0.250 g cm−3.

For the analysis of our spectra in terms of scaling arguments (Alexander et al 1993), in
figure 8 we have plotted, on a log–log scale, S̄(q, ω) versus q for the A sample for some
frequency values: 20.8, 34, 90.7, 242.1, 395.6, 646.4, 1056.2 and 1725.8 GHz. We observe
that as soon as ω increases a regime with a positive slope appears in the low q-value region to
the detriment of the decreasing high q-value regime.

In order to check the q-index scaling of S(q, ω), we determined, for each frequency
ω, the wave-vector modulus q0 for which S̄(q, ω) has the maximum value. S̄(q, ω) values



Dynamic properties of silica aerogels 5423

Figure 7. The reduced dynamic structure factor S(q, ω) versus q, for sample A of density
ρ = 0.088 g cm−3 for five values of the frequency ω/2π : —◦—, 12.7 GHz; —�—, 20.8 GHz,
—♦—, 34.0 GHz; —�—, 55.5 GHz; —•—, 90.7 GHz. Inset: the dynamic structure factors S(q, ω) for
basic silica aerogels (ρ = 0.25 g cm−3) as described in Reichenauer et al (1989).

Figure 8. The reduced dynamic structure factor S(q, ω)/q2 versus q, on a log–log scale, for
sample A of density ρ = 0.088 g cm−3 for eight values of the frequency ω/2π : —◦—, 20.778 GHz;
—�—, 33.953 GHz; —♦—, 90.658 GHz; —�—, 242.07 GHz; —•—, 395.55 GHz; ——, 646.35 GHz;
—�—, 1056.2 GHz; —�—, 1725.8 GHz.

are then rescaled by S̄(q0, ω) and averaged over ω to give the function S̄(q) = S(q)/q2 =
1
n

∑n
ω=1(S̄(q, ω)/S̄(q0, ω)) (Rahmani et al 1996). The results demonstrate that the wave vector
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Figure 9. The values of wavelength λ(ω) ∝ 1/q0 plotted as a function of frequency ω/2π , on a
log–log scale, for the sample of density ρ = 0.088 g cm−3.

dependence complies with the power law

S̄(q) ∝ q1.7±0.1 for q below q0 (19a)

and

S̄(q) ∝ q−2.1±0.1 for q above q0. (19b)

Finally, in figure 9, we have plotted, on log–log scale, the length scale λ ∝ 1/q0 versus
the frequency ω for the A sample. As indicated by the full line, we observe that the scaling
length complies with the power law:

λ(ω) ∝ ω−0.98±0.03 (20)

4. Discussion and conclusion

In this paper, we have studied the dynamic properties of a realistic model for silica aerogels.
This model is based on a lattice cubic DLCA fractal structure in three dimensions where
the primary particle is represented by a vitreous silica sample of 648 atoms, confined in a
box, given by molecular dynamics simulation. The studied samples can be compared to
experimental samples of studied silica aerogels (size greater than 600 Å and densities from
ρ = 0.088 g cm−3 to ρ = 0.176 g cm−3). Using the spectral moments method and its parallel
code form, we have calculated the densities of states and dynamic structure factors of our
systems with accuracy up to 1 GHz.

The analysis of our numerical results of DOS in the light of a scaling theory proposed by
Alexander and Orbach (1982) and Feng (1985), shows that the vibrational spectra of our system
presents two different contributions in frequency regions delimited by crossovers ωc and ωa .
In the frequency region ωe < ω < ωa , the spectra present a linear fracton regime governed by
an effective spectral dimension d̃s = 2.04 ± 0.03 usually associated with stretching modes.
For ωc < ω < ωe, the spectra present a fracton regime, usually associated with bond-bending
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motions, with a spectral dimension d̃b = 1.06 ± 0.03. The calculated spectral dimension
values for our models are close to measured values for basic silica aerogels (d̃s ≈ 1.9 and
d̃b ≈ 1.0: Vacher et al 1990), for which the mean particle radius was ∼10 Å. The phonon-
fracton crossover ωc is around 1 GHz, in agreement with Brillouin’s experiments. We also
note close agreement between the computed value of the fracton–particle mode crossover
ωa/2π ≈ 400 GHz and the measured values. The experimental value ωe/2π ≈ 10 GHz is
close to the computed one ωe/2π ≈ 15 GHz.

To test the accuracy of our calculation with scaling arguments, we now consider the
scaling laws (9) and (11). Combining the relations (3) and (4), one can deduce the scaling law
(Courtens and Vacher 1997)

ωc ∝ ρD/d̃b(3−D). (21)

With the bond-bending spectral dimension value d̃b = 1.06 ± 0.03 deduced from the scaling
behaviour of the DOS, from power law (9) one can find that D = 1.91 ± 0.05.

On the other hand, the sound velocity obeys the scaling law (Courtens and Vacher 1997),

Cs ∝ ρd̃b−D/d̃b(D−3). (22)

From the power law (11), we find that the fractal dimension D = 1.98 ± 0.05, with the same
value d̃b = 1.06 ± 0.03, is close to the value deduced from equation (21).

The average value ofD = 1.95±0.05 closely agrees with the fractal dimension of DLCA
in three dimensions. We note also that this obtained fractal dimension for our model is near
the fractal dimension value of some basic silica aerogels.

From Anglaret et al (1995), the sound velocity in silica aerogels varies with an exponent
ranging from 0.43 to 1.41. The computed value 0.86 (equation (11)) for our model is consistent
with these values.

The comparison of our result for the dynamic structure factor with the experimental
measurement of Reichenauer et al (1989) shows a qualitative similarity (figure 7). In addition,
good agreement is also obtained for scattering intensity as indicated in figure 8 compared to
experimental spectra of silica aerogels (Vacher et al 1990).

To discuss our results on the dynamic structure factor in the light of the scaling theory of
Alexander et al (1993), we observe in figure 8 that the bond-bending mode region is similar for
all curves for fixed wave-vector q (q > 0.0087 Å−1) and similar to the DOS spectra, whereas
in the stretching fracton mode region the dynamic structure factor complies with a power law
S(q, ω) ∝ qγω−α with γ = 3.7±0.1 and α = 2.10±0.05 in the qλ � 1 limit. In the qλ � 1
limit, we have the scaling form S(q, ω) ∝ qδωβ with δ = −0.10 ± 0.10 and β = 0.97 ± 0.05.
The γ -value is close to 4 as expected in equation (15) and identical to the value obtained for 3D
DLCA in the case of scalar elasticity (Rahmani et al 1996). We can also note that the α-value
(≈2.3) obtained for these systems is close to the value of our realistic model in this region of
frequencies, which could actually be associated with the stretching modes. This also confirms
the validity of the scaling law proposed by Alexander et al (1993) in the qλ � 1 limit. In
the qλ � 1 limit, the δ-value (0.21) and β-value (0.4) for 3D DLCA with scalar model are
substantially different from the values of our model. This difference could be associated with
the tensorial nature of interactions induced by the used potential.

To test the coherence of our computed indices in stretching regime modes from scaling
laws (20) and (3) and using the average fractal dimension D = 1.95 ± 0.05, we deduce
that d̃s = 1.91 ± 0.11 is close to the computed value above. From the expression of α
(equation (15)), one can deduce that σ ≈ 1.5. This value is in agreement with the notion that
σ > 1 (Alexander et al 1993).

If we suppose that in the qλ � 1 limit the dynamic structure factor is controlled by the
scaling law (17a), by comparison with the computed δ and β, we find that d̃s ≈ 1.97 and
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σ ≈ 1. The value of the obtained spectral dimension d̃s is close to the value deduced from the
DOS spectra. This σ -exponent value differs from the qλ � 1 limit, but is still close to 1 as
expected theoretically.

In conclusion, to take into account the tensorial nature of vibrations in realistic systems like
silica aerogels, we have developed a model where the interaction between atoms is represented
by the BKS potential. With a structure based on a DCLA fractal system, we have reproduced
the density of states of spectra obtained for silica aerogels. Two different contributions are
observed, as in experimental conditions, with spectral dimensions d̃b ≈ 1 and d̃s ≈ 2 close to
the measured values. In agreement with reality, we note that our model shows that the sound
velocity in our systems increases with increasing macroscopic density. This model accurately
reproduced the results obtained by inelastic neutron scattering in silica aerogels. Our model
qualitatively and quantitatively gives a good description of the dynamic properties of silica
aerogels. To obtain a complete description, studies on light scattering in silica aerogels with
this model are in progress.
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